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Application of Phone-Based Robotic Arm Teleoperation in Remote
Hands-On Labs for Engineering Education

Abstract

Remote education, particularly in manufacturing engineering disciplines, is often limited in
providing authentic hands-on learning experiences. Teleoperation has shown its potential to
bridge this gap, yielding gains in fidelity, accessibility, and flexibility. However, traditional
systems rely on expensive input devices that require significant training – such as space mice or
virtual reality equipment. These devices restrict the broader adoption in education. To address
these challenges, we developed and implemented TeleopLab: intuitive teleoperations to enable
accessible remote hands-on labs. TeleopLab allows students to remotely control a robotic arm and
lab equipment in real time using a smartphone motion interface in conjunction with Zoom. We
designed TeleopLab to preserve the interactivity and real-world complexity of this process while
transitioning the lab to an online format with minimal modification to the original lab content.
This system was implemented in a professional laboratory course in an industry-led advanced
manufacturing training program at an innovation center in western Massachusetts. This program
includes complex tasks such as testing the tensile strength of 3D-printed parts. Students must
iteratively use the results of the tensile strength measurement to adjust the 3D printing parameter
settings and improve the quality of the print through multiple cycles. TeleopLab preserves the
interactivity and real-world complexity of these processes, allowing students to conduct multiple
cycles of testing and adjustment critical to manufacturing training. The educational impact of
TeleopLab was evaluated using the Motivated Strategies for Learning Questionnaire (MSLQ),
with pre- and post-use data collected from six students. The results showed an improvement of
25% in self-efficacy, 27% in motivation to re-engage, and a reduction of 13% in fear of making
mistakes among students during the lab activities. Our findings suggest that TeleopLab offers a
scalable, cost-effective solution to support authentic and interactive hands-on learning for remote
learners.
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1 Introduction

In recent years, remote and hybrid learning has experienced an unprecedented boom across
various levels of education [1–6]. Stimulated by advances in digital communication tools [7, 8]
and accelerated by global circumstances necessitating flexible teaching approaches [9–12], this
shift has broadened access and extended learning opportunities worldwide. Yet, engineering
educators face a critical challenge when attempting to replicate hands-on experiences [10, 13],
particularly in manufacturing programs where iterative experimentation, physical manipulation of
equipment, and real-time data collection are essential [14–18].

Among the emerging solutions for remote labs, simulation-based platforms have garnered
attention for their wide accessibility and relatively low setup costs. These virtual environments
enable students to practice and visualize engineering concepts without geographic or scheduling
constraints. However, although simulations can effectively reinforce theoretical knowledge, they
often lack the physical realism and unpredictability of authentic lab work [19–23]. Updating or
expanding simulation environments to reflect changing industrial practices can also be expensive
and time-consuming. Such limitations have led educators to explore teleoperation systems, which
offer the promise of direct interaction with physical equipment from a distance.

Several studies have investigated the application of teleoperation in educational settings. Certain
systems have been developed to utilize the inherent connection between teleoperation and
robotics, aiming to instruct on robotic concepts like navigation [24] or robot control [25–27].
Meanwhile, other systems broaden the scope of teleoperation to a wider array of disciplines that
can gain from remote control capabilities, including material science [28, 29], manufacturing
[30, 31], chemistry [32], and mechatronics [33].

Despite the potential of teleoperation, many platforms rely on traditional input devices, like
standard mice and keyboards [24, 25, 27, 28, 30–32, 34], or specialized hardware, such as virtual
reality headsets [34–37] and haptic controllers [37–41]. These options do not fully address the
need for intuitive interaction for realistic remote interactions: traditional devices lack the fidelity
and ergonomics to manipulate complex, real-world tasks effectively [42], while specialized
systems often carry prohibitive costs [43–45] and demand steep training curves [45–47]. As a
result, instructors are sometimes pressured to dilute or restructure lab activities to fit these
constraints, ultimately eroding the iterative, hands-on processes essential for robust
manufacturing education. Without these genuine cycles of trial, feedback, and refinement,
students may struggle to transition seamlessly from conceptual understanding to real-world
application, undermining a cornerstone of practical engineering training.

To address these issues, we developed TeleopLab, a remote-laboratory system that omits
expensive or specialized hardware in favor of a standard smartphone interface and a common
video-conferencing platform (Zoom) (Fig. 1). This design lowers the financial and logistical
barriers typically associated with teleoperation (i.e., off-site control), allowing students to control
robotic arms and other lab equipment in real time with minimal disruption to existing lab
curricula. While our previous work details TeleopLab’s technical architecture, the current study
focuses on how TeleopLab enables iterative, high-fidelity learning experiences in a remote
environment. By maintaining the core elements of traditional lab exercises—setup, manipulation,
measurement, and troubleshooting—TeleopLab preserves the essential richness and complexity



Figure 1: TeleopLab System Setup. The user manipulates the robot by maneuvering their phone
to set waypoints and manages the lab equipment via Zoom’s remote control feature on the host
computer. Camera feeds are sent to the host computer and shown on the remote desktop for the
user to observe.

that shape professional manufacturing practice.

Through this approach, TeleopLab merges the accessibility of simulations with the reality of
physical experimentation, targeting a long-standing obstacle in remote engineering education:
delivering truly hands-on practice without incurring prohibitive costs. In the sections that follow,
we situate TeleopLab within the broader landscape of remote manufacturing education, describe
its application in a professional advanced manufacturing course, and discuss the system’s impact
on learner engagement, motivation, and outcomes. Our findings point to a cost-effective,
user-friendly path forward for institutions and training programs seeking to balance flexible
access with the experiential rigor demanded by modern manufacturing curricula.

2 Methods

2.1 System Setup

TeleopLab consists of two main components—the teleoperation station and the user endpoint—as
shown in Fig. 2. On the station side, a robotic arm, an adaptive gripper, two cameras, a host
computer, and a tensile testing machine enable real-time remote experimentation. On the user
side, a smartphone app and a second device for Zoom provide a streamlined interface for
controlling the station and viewing lab operations.



2.1.1 Teleoperation Station

• Robotic Arm: We used an ABB-IRB120 arm with an IRC 5 controller. The arm, released
in 2010, was selected to ensure compatibility across various educational and industrial
contexts. The Robot Operating System (ROS) Noetic (Ubuntu 20.04) manages motion.
While ABB’s ROS Industrial driver uses a TCP-based Robot Web Service (RWS) unsuited
for high-frequency teleoperation, we implemented a Google Protocol Buffers (UDP)-based
Externally Guided Motion (EGM) control [48] for smoother, real-time performance. Aside
from collision-error acknowledgment, all robot settings are configured remotely, reducing
the need for onsite operation on the robot controller/pendant.

• Gripper: An InstaGrasp adaptive gripper [49] provides versatile, cost-effective
manipulation. It is 3D printed with PLA and TPU, making it easy to replicate and maintain
in educational settings where students handle varied objects.

• Cameras: Two cameras (Fig. 3) give students multiple perspectives. A RealSense D405
3D camera is mounted on the robot’s end effector for close-up views of manipulation tasks,
while a Logitech C920x HD Pro Webcam on a tripod offers a wide-angle overview. Both
streams are shared via Cheese on Ubuntu, enabling smooth switching in Zoom.

• Host: An HP EliteBook 840 laptop (i5-4300U, 8GB RAM) running Ubuntu 20.04 as the
primary OS serves as the system’s core, handling user inputs, robot controls, and tensile
tester commands. The motion commands sent from students’ phones are converted to robot
poses by a teleoperation robot interface [50], and to robot joint angles by TracIK [51]. A
lab equipment interface controls a Mark-10 F305-EM tensile tester via serial
communication. Students initiate and reset tensile tests through a simple, clickable UI (Fig.
2). For lab equipment that lacks external control capabilities or automation features, using
robotic arms for direct manipulation or integrating additional automation systems may be
considered as possible solutions.

2.1.2 User Endpoint

• Smartphone App: Students operate the robot using an iOS or Android app (Fig. 4) built
on ARKit (Apple) or ARCore (Google), which translates phone motion into robot
commands. Tapping “start teleop” sets a relative origin, simplifying extended
manipulations. A single button controls the gripper (open/close), and another resets the
robot to a neutral position. The app connects automatically to the host computer using a
hard-coded IP and port. The APPs were designed to cover a wide range of devices with
Android 7.0 and iOS 11 as the minimum requirements, respectively.

Motion sensing performance varied depending on the phone model. Lidar-capable iPhones
achieved sub-centimeter accuracy, benefiting from dedicated depth sensors that enable more
precise measurements. In contrast, other phones—including many Android devices
generally delivered accuracy at the centimeter level.

• Remote Desktop: A second device (e.g., laptop, tablet) connects to Zoom to view the
robot’s workspace, switch between the close-up and wide-angle cameras, and access the
desktop running the robot and tensile tester interfaces.



Figure 2: Teleoperation Station User Interface. The interface has three components: (1) UI for
teleoperation (upper left), (2) UI for lab equipment operation (lower left), (3) camera views (right)

2.2 User Testing

A user testing was conducted to evaluate the usability and effectiveness of TeleopLab in
lab-centric remote learning, especially in terms of learner preferences, learner experiences, and
cognitive outcomes. The study involves the development of learning materials, training materials,
pre- and post-surveys, and optional interviews. The study was designed so that everything could
be completed remotely.

2.2.1 Study Context and Participants

This study was conducted in a workforce training program during Summer 2024 at an innovation
center in western Massachusetts. This lab-based course centers on advanced manufacturing
topics, including the DMAIC (Design, Measure, Analyze, Improve, and Control) problem-solving
framework, design of experiment, manufacturing variance, and statistics, and emphasizes
high-fidelity experience with real-world industrial problems.

The program, now in its third iteration, had previously hosted two cohorts that were conducted
entirely in person. However, for the third cohort, the laboratory component was shifted to a purely
remote format to accommodate the geographic dispersion of participants. For this third cohort,
the main educational goal remained consistent—teaching process optimization and iterative
experimentation—but the hands-on lab portion was adapted to TeleopLab’s remote platform to
replicate essential in-person experiences from past cohorts.



Figure 3: Camera Views.



Figure 4: Android and iOS APP. The gripper button is responsible for operating the gripper’s
opening and closing functions. The reset button directs the robotic arm to return to its default home
position. Holding down the “Start Teleop” button initiates the transmission of motion inputs.

Over the course’s six-week duration (four hours per week), three weeks were devoted to lab
activities focused on optimizing production parameters for a 3D-printed part. Specifically,
students aimed to reduce print times while maintaining the highest possible tensile strength. In
the previous, fully in-person setup, students were first given several batches of baseline
parts—each with known printing parameters—to measure and evaluate. Based on these initial test
results, they proposed revised printing parameters in an effort to shorten production times without
compromising quality. After fabricating new parts with the updated parameters, students repeated
the tensile tests to determine whether the results aligned with their predictions. Finally, they
performed one last round of parameter adjustments and tests, selecting and presenting the optimal
set of parameters that offered the best balance between reduced printing time and mechanical
strength.

The cohort primarily consisted of incumbent workers, engineers, and managers from diverse
professional backgrounds. Participants had educational backgrounds ranging from high school
diplomas to bachelor’s degrees, and represented a wide age spectrum. While many had limited
exposure to robotic teleoperation, the program incorporated concise, focused training sessions to
acquaint them with essential teleoperation knowledge and skills. These brief sessions ensured that
participants could master the basics without diverting undue time and attention from the main
learning objectives.

2.2.2 Study Procedure

At the beginning of the cohort, we adapted our existing course materials for a fully online format.
Direct adaptation involved converting the original problem statement, experiment design
principles (following a DMAIC framework), and data analysis instructions into handouts or
recorded videos, which were then uploaded to the learning management system (LMS).
Modification entailed reconfiguring the in-person lab activities to an online setting while retaining



as many physical, hands-on elements as possible. The redesigned lab task ensures that students
maintain active engagement with tangible equipment via teleoperation, following these
steps:

1. Connecting to the TeleopLab server using their smartphone app

2. Remotely controlling the robotic arm to pick up a specimen

3. Positioning the specimen on the Mark-10 tensile tester

4. Operating the tester to measure tensile strength and record data

5. Returning to the reloading location to repeat the process with a new specimen.

Alongside these lab instructions, a concise lecture on teleoperation and robotics was developed to
give students foundational knowledge, motivation, and context for interacting with the system
remotely.

The 10 students participated in the lab session. However, three of them had the phone older than
the minimum requirement and one of them did not complete the study, resulting 6 students
completting the study. Each student was asked to complete a survey with pre- and
post-assessments. The assessment contain 5 parts: (1) biographical information (2) Motivated
Strategies for Learning Questionnaire (MSLQ) [52], (3) expectation vs. experience, (4) overall
rating of the experience, and (5) free response feedback.

A total of ten students initially enrolled in the remote lab sessions, but due to hardware
incompatibilities (three participants owned phones below the minimum technical requirements)
and one participant failing to finish the study, six students ultimately completed the full laboratory
experience. For the three students, a keyboard-based teleoperation program was provided as an
alternative to help them finish. Each participant was required to fill out a survey with pre- and
post-assessments, comprising four sections: (1) biographical information, (2) Motivated
Strategies for Learning Questionnaire (MSLQ) [52], (3) overall rating of the experience, and (4)
free-response feedback. This multi-part assessment captured not only baseline traits and
motivational factors but also students’ evolving perspectives on TeleopLab’s remote, hands-on
learning components.

3 Results and Discussions

3.1 MLSQ

Table 1 presents the pre- and post-self-report ratings for each participant (S1–S6) across four
main categories—Self-Efficacy (SE) in Learning, SE in Application, SE in Performance, and Fear
of Mistakes—as well as Motivation to Re-engage. The rows are grouped by category rather than
question order, making it easier to spot patterns within each dimension of learning. Each response
is color-coded according to the numeric rating on a 5-point Likert scale, where red (1) indicates
Strongly Disagree and green (5) indicates Strongly Agree.

• Self-Efficacy (Learning): The questions focus on students’ self-efficacy toward learning.
Most students’ ratings shift toward greener cells from pre to post, suggesting they grew



Table 1: Reordered MSLQ Items (Q1–Q15) by Category with Pre/Post Ratings (1 = Strongly
Disagree, 5 = Strongly Agree).

Pre Ratings Post Ratings

Q# Category S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

Q1 SE (Learning) 3 4 4 3 4 5 4 5 5 4 5 5
Q5 SE (Learning) 4 3 4 3 4 1 4 5 5 4 4 4
Q9 SE (Learning) 4 4 3 4 4 4 3 5 4 5 4 5

Q2 SE (Application) 3 3 4 3 4 2 3 4 5 4 5 4
Q6 SE (Application) 4 3 4 3 3 1 3 4 5 5 4 4
Q10 SE (Application) 3 2 5 2 5 4 4 5 5 5 5 5

Q3 SE (Performance) 4 4 4 4 3 5 3 5 5 5 4 5
Q7 SE (Performance) 4 4 4 4 3 4 4 5 5 5 4 4
Q11 SE (Performance) 5 3 4 3 4 4 4 5 5 5 4 5

Q4 Fear of Mistakes 3 2 2 5 5 3 4 4 5 5 5 5
Q8 Fear of Mistakes 5 4 5 5 4 4 5 4 5 5 5 5
Q12 Fear of Mistakes 4 5 5 5 5 5 4 5 5 5 5 5

Q13 Motivation (Re-engage) 5 5 4 3 4 4 5 5 5 5 4 5
Q14 Motivation (Re-engage) 3 4 3 3 4 4 4 5 5 3 3 5
Q15 Motivation (Re-engage) 3 4 1 3 3 2 4 5 5 3 3 5

more confident in their ability to learn the course material.

• Self-Efficacy (Application): These items gauge how prepared students feel to apply what
they have learned. In general, the post ratings are higher (more green), demonstrating
increased self-assuredness in carrying out manufacturing processes or teleoperation tasks.

• Self-Efficacy (Performance): This category reflects confidence in achieving high
performance on specific lab tasks or objectives. Similar to the other SE measures, the table
shows that most participants reported stronger agreement (moving from yellows and light
greens to darker greens), suggesting they felt increasingly capable of meeting performance
benchmarks.

• Fear of Mistakes: These items assess anxiety about errors or damaging equipment.
Notable improvements appear here as well, with participants shifting from lower to higher
ratings.

• Motivation to Re-engage:

In this final category, the majority of cells shift from lighter to darker greens, reflecting a
greater willingness to continue learning or to repeat the lab experience. Students generally
express higher post-lab motivation, possibly due to the hands-on teleoperation aspect of the
course.

Table 2 summarizes the overall percentage improvements from pre- to post-assessment for each



MSLQ category and for Motivation to Re-engage. Specifically, the data show how students’
self-reported ratings changed on a 5-point Likert scale before and after participating in the
teleoperated lab activities. Participants’ confidence in their ability to learn and understand
manufacturing concepts showed a moderate 23% gain. This suggests that direct engagement with
physical lab equipment—although remotely—helped clarify theoretical knowledge and boosted
learners’ perceived competence. The most substantial rise (36%) was in applying learned skills to
real tasks. Operating the robotic arm and tensile testing machine in real time may have helped
students see concrete cause-and-effect relationships, thereby strengthening their belief in their
practical abilities. A 17% improvement indicates that while students felt more assured in meeting
performance benchmarks, this rise was more modest compared to other self-efficacy measures.
Hands-on tasks may have involved steep learning curves, especially for those unfamiliar with
robotic teleoperation. A drop of 13% in fear or anxiety around making errors suggests students
became more comfortable experimenting, likely thanks to the system’s user-friendly interface,
virtual fences, and staff support. Lower anxiety typically correlates with higher willingness to
explore and learn. A notable 27% increase in students’ desire to continue or repeat lab-based
activities underscores the role of active participation in building enthusiasm. The novelty of
controlling physical equipment from afar, combined with tangible feedback, likely contributed to
sustained interest.

Table 2: Percentage Improvements by Category with Pre- and Post-Assessment Data
Category Pre (Mean ± SD) Post (Mean ± SD) Improvement (%)

Self-efficacy (Learning) 3.61 ± 0.85 4.44 ± 0.62 23%
Self-efficacy (Application) 3.22 ± 1.06 4.39 ± 0.70 36%
Self-efficacy (Performance) 3.89 ± 0.58 4.56 ± 0.62 17%
Overall Self-efficacy — 25%
Fear of Mistakes 4.22 ± 1.06 4.78 ± 0.43 13%
Motivation to Re-engage 3.44 ± 0.98 4.39 ± 0.85 27%

The percentage gains in MSLQ underline the positive impact of integrating real-time
teleoperation into a remote lab environment. The largest jump—Self-Efficacy
(Application)—suggests that when students can manipulate physical hardware from a distance
and witness immediate outcomes, they form stronger convictions about their ability to apply
theoretical concepts. Meanwhile, Fear of Mistakes shows a moderate yet meaningful decline,
implying that an accessible, well-supported teleoperation interface can help novices feel safer
experimenting.

Notably, Motivation to Re-engage rose by over 27%, which indicates that experiential, real-time
engagement can mitigate some of the disconnect often reported in remote learning contexts. By
contrast, Self-Efficacy (Performance) had a smaller upswing than Application, possibly pointing
to lingering uncertainties about mastering complex robotic tasks within limited session time.
Future designs could incorporate additional practice or scaffolding to further bolster performance
confidence.
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Figure 5: Comparison of Learning Experience Ratings.

3.2 Overall Experience

Among the six students, four had previously engaged in remote learning (Fig. 5). Two students
previously rated past experience as “Neither Positive nor Negative,” one student as “Somewhat
Positive,” and one as “Extremely Positive.” By contrast, for their experience with TeleopLab, two
students reported “Somewhat Positive,” while four selected “Extremely Positive.” This
distribution shows a clear shift from more neutral or mildly positive perceptions in the past to
strongly positive attitudes in the present, suggesting that the current learning setup was better
received overall.

3.3 Qualitative Feedback

In addition to the quantitative metrics, students provided open-ended feedback highlighting both
the positive aspects of TeleopLab and suggestions for improvement, such as:

• “Color-coded alerts on the controller app to show proximity to the target would be
extremely helpful.”

• “It was very helpful with the data collection and a very good experience.”

• “It was an interesting experience and enjoyed doing it”

• “There were ‘bugs’ in the system, such as disconnecting and needing to reconnect and
needing to restart the software numerous times, no control over full operation such as
picking up dropped pieces, ”finger“ could have been better designed.”

• “it was great! it offered a very unique experience that allowed me to work this project
remotely with a hands on type experience.”



• “It didn’t distract me from learning. On the contrary, I think it aided in learning.”

Overall, participants appreciated having the opportunity to experience real-time manipulation of
physical lab equipment from a remote location—an experience many of them had never
encountered in prior online courses. However, several areas emerged where TeleopLab could be
enhanced.

Although TeleopLab successfully demonstrated remote teleoperation, periodic network glitches
undermined the smoothness of the robot’s movement. Students reported instances where the
robotic arm would shake or stall due to packet losses, or the session would drop entirely and
require manual reconnection. For larger-scale deployment, a more robust network implementation
that offers automatic, low-effort reconnection would alleviate interruptions and maintain student
engagement.

Another prominent challenge was task perception when switching between two distinct camera
views. While the dual-camera setup helped mitigate the lack of depth information from a single
viewpoint, participants found toggling between close-up and wide-angle perspectives mentally
taxing. A more integrated approach—potentially incorporating 3D rendering or augmented
visualization—could reduce cognitive load and improve depth perception, thereby enhancing
users’ overall sense of immersion and control.

These findings underscore the potential of TeleopLab to deliver immersive, hands-on experiences
while also pointing toward concrete areas for future development. By refining network stability,
streamlining reconnection protocols, and improving visual cues for remote manipulation,
TeleopLab can become more robust and user-friendly in broader educational contexts.

One of the primary limitations of this study is the small sample size of six participants, which
may limit the generalizability of our findings. Because the sample was limited to six participants,
the results may not reflect the broad range of perspectives and experiences of all potential
end-users. Despite the limited number of participants, the study provided in-depth qualitative
feedback that helped us identify critical usability issues and user preferences.

4 Conclusion

In conclusion, TeleopLab demonstrates substantial promise for delivering authentic, hands-on
learning in remote engineering education. By integrating a cost-effective smartphone interface
with real-time robotic control, TeleopLab preserves the interactivity and experiential rigor
typically found in physical labs—without the expense or logistical constraints of specialized
hardware. The system’s ability to enhance self-efficacy, motivate learners, and reduce anxiety
around making mistakes underscores its advantage over purely simulated approaches.
Nonetheless, challenges such as network reliability, camera-view management, and depth
perception remain areas for refinement. Future improvements—ranging from robust
auto-reconnection protocols to more sophisticated remote 3D visualization—will further
strengthen TeleopLab’s effectiveness and scalability. Beyond manufacturing contexts, TeleopLab
holds the potential to transform how students and professionals across STEM disciplines engage
with real-world equipment and processes, bridging physical distances and fostering the practical
skills essential for career success.
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A Appendix

A.1 MLSQ Pre-Activity Questions

1. Before teleoperation sessions: I was confident I could understand the basic concepts taught in the
manufacturing data collection.

2. Before teleoperation sessions: I was confident I could explain why manufacturing variation occurs.

3. Before teleoperation sessions: I expected to do well in the manufacturing data collection activity.

4. Before teleoperation sessions: I was NOT afraid that my mistakes in teleoperation would harm the equipment.

5. Before teleoperation sessions: I was certain I could understand the most challenging material presented in the
manufacturing data collection.

6. Before teleoperation sessions: I was certain I could recognize common sources of manufacturing variation.

7. Before teleoperation sessions: I was confident I could do an excellent job on the tasks of the manufacturing
data collection activity.

8. Before teleoperation sessions: I was NOT afraid of trying new things because of my fear of making mistakes.

9. Before teleoperation sessions: I was certain I could master the content being taught in this activity.



10. Before teleoperation sessions: I was confident in measuring samples with a tensile tester in person
(non-teleoperation).

11. Before teleoperation sessions: Considering the difficulty of this activity and my skills, I thought I would do
well in the manufacturing data collection activity.

12. Before teleoperation sessions: I believed that making mistakes was a natural part of the learning process.

13. Before teleoperation sessions: I looked forward to the next time I would be able to engage with manufacturing
data collection.

14. Before teleoperation sessions: I saw myself engaging with manufacturing data collection for a long time to
come.

15. Before teleoperation sessions: I would seek out opportunities to engage in manufacturing data collection
outside of courses.

A.2 MLSQ Post-Activity Questions

1. After teleoperation sessions: Now, I’m confident I can understand the basic concepts taught in the
manufacturing data collection.

2. After teleoperation sessions: Now, I’m confident I can explain why manufacturing variation occurs.

3. After teleoperation sessions: Now, I expect to do well in the manufacturing data collection activity.

4. After teleoperation sessions: Now, I am NOT afraid that my mistakes in teleoperation will harm the
equipment.

5. After teleoperation sessions: Now, I’m certain I can understand the most challenging material presented in the
manufacturing data collection.

6. After teleoperation sessions: Now, I’m certain I can recognize common sources of manufacturing variation.

7. After teleoperation sessions: Now, I’m confident I can do an excellent job on the tasks of the manufacturing
data collection activity.

8. After teleoperation sessions: Now, I am NOT afraid of trying new things because of my fear of making
mistakes.

9. After teleoperation sessions: Now, I’m certain I can master the content being taught in this activity.

10. After teleoperation sessions: Now, I am confident in measuring samples with a tensile tester in person
(non-teleoperation).

11. After teleoperation sessions: Considering the difficulty of this activity and my skills, I think I will do well in
the manufacturing data collection activity.

12. After teleoperation sessions: Now, I believe that making mistakes is a natural part of the learning process.

13. After teleoperation sessions: Now, I look forward to the next time I’ll be able to engage with manufacturing
data collection.

14. After teleoperation sessions: Now, I see myself engaging with manufacturing data collection for a long time
to come.

15. After teleoperation sessions: Now, I will seek out opportunities to engage in manufacturing data collection
outside of courses.


