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Figure 1: We present an open-ended VR system for training machining skills, particularly for drilling using a 3-axis milling
machine. Our system allows multiple pathways to achieve goals wherever feasible while enforcing strict protocols when
necessary.

ABSTRACT
With the rise in exploring Virtual Reality (VR) to enhance the train-
ing of psychomotor skills, several systems have been designed
within the manufacturing sector to train for machining skills. How-
ever, existing industry training programs often lack the flexibility
to accommodate human error and the adaptability to allow multiple
paths to achieving the end task goal. We address this limitation
through our VR training system by adopting an open-ended ap-
proach to system design. In this interactivity demo, we present our
VR training simulation which is specifically tailored for practicing
drilling skills using a 3-axis milling machine. This simulation offers
an open-ended learning experience, guiding users through safety
protocols, setup procedures, drilling tutorials, and open-ended prac-
tice sessions. It provides real-time feedback onmistakes and failures
and an evaluation of the drilled geometries. For the demo, partici-
pants will train for the drilling task with our open-ended VR tool.
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1 INTRODUCTION
With conventional classroom and hands-on workshop training ap-
proaches for manufacturing skills like welding and drilling [22, 23]
being difficult to scale, virtual reality (VR) training environments
are explored widely as a scalable alternative [1, 12]. Furthermore,
VR offers the opportunity to design adaptable and personalized
training to provide efficient and effective training to a wide variety
of learners, thus increasing accessibility while saving training costs
[4, 15]. Recent studies have demonstrated that VR is effective for
training manufacturing tasks like welding and preparing trainees
for real-world work environments.
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However, much of the design of these existing training systems
and tools in VR follows a closed guidance-based tutorial approach.
Such a prescriptive method can often limit the trainee’s open-ended
exploration, user engagement, and error management during their
training. Some guided tutorials offer minimal interactivity, essen-
tially reducing user engagement to clicking a "next" button, thus
restricting exploration [24]. Others that permit more interaction
still confine goal achievement to a single predetermined pathway,
limiting trainees’ understanding and learning of different tools and
approaches [11].

On the other hand, an open-ended approach to designing tutori-
als involves affording more freedom to explore and learn multiple
ways of achieving the same end goal. In our work, we present
the prototype of an open-ended VR system for training machin-
ing skills, particularly for drilling using a 3-axis milling machine
(Figure 1). Our system allows multiple pathways to achieve goals
wherever feasible while enforcing strict protocols when necessary.
For instance, when setting up a milling machine for an edge-finding
operation, users have the flexibility to perform tasks like locking the
spindle, turning it on, and adjusting the spindle speed in any order,
provided that spindle speed adjustment occurs after the spindle is
on. Our open-ended system employs task analysis and dynamically
updates learners’ goals during training, granting them the freedom
to explore diverse methods for task execution and goal adaptation.

Our prior work [18] on studying the effectiveness of our open-
ended immersive VR training that adapts to human error during
machining tasks on the learners’ performance and training experi-
ence, showed that the VR training group successfully completed
the machining task of drilling at a higher rate, with fewer mistakes,
and in lesser time compared to the control group.

The interactivity session will be the live demo of our open-ended
VR training system, guiding users through safety protocols, setup
procedures, drilling tutorials, and open-ended practice sessions. The
users will get real-time feedback on mistakes and failures, alongside
an evaluation function to compare their drilled hole geometries and
placements with the ideal task. Through this demonstration, we
will be able to present our framework implemented in a full pipeline
of a system for training for machining tasks. Our system can be
adapted to train for various other machining and workshop-related
training courses across various institutions.

2 RELATEDWORK
Our work is situated within the HCI research, specifically focused
on open-ended frameworks for designing learning systems and the
design of XR tools for learning psychomotor skills for applications
in manufacturing.

2.1 Open-ended Frameworks for Learning
Systems

In learning science, the concept of open-ended learning (OEL) and
learning environments (OELEs) play a pivotal role in fostering a
learner-driven approach, allowing individuals to determine what
and how they learn [10]. Unlike direct instruction (DI), which fo-
cuses on prescribed learning strategies and goals, OEL is rooted
in constructivist principles and emphasizes that comprehension is
mediated by the learner’s active involvement and exploration [8, 9].

OEL offers advantages such as flexibility [26], personalized and
student-centered approaches [19], and fostering self-directed learn-
ing [16], thereby enriching the learning experience.

In the area of learning psychomotor skills, studies have explored
the impact of different learning strategies [20, 21], such as con-
stant practice (CP) versus variable practice (VP) on skill acquisition.
While earlier studies have favored VP over CP [17], recent evidence
by Ianovici and Weissblueth [14] suggests that CP is more ben-
eficial for novices, whereas VP is advantageous for experienced
learners. However, unlike the focused nature of motor skill studies,
manufacturing professions demand a diverse skill set, encompass-
ing both fine and gross motor skills [1]. Workers must discern
goals and situations to effectively employ various skills to complete
tasks. For instance, machinists are tasked with setting up, operating,
and disassembling machine tools, aligning and adjusting cutting
tools and workpieces, and employing different tools and machining
specifications to shape machine workpieces within specific param-
eters [27]. It’s crucial to note that a machinist might never replicate
the same part. Despite this complexity, there’s limited research
that integrates insights from open-ended learning theories into
manufacturing skills training.

Our work addresses this gap by exploring the design of an open-
ended training system in VR for machining skills like drilling.

2.2 XR Tools for Learning
Extended Reality (XR) systems have proven effective in fostering
skill acquisition across diverse domains, encompassing medical,
safety, engineering, and industrial sectors [1, 12, 15]. XR technol-
ogy has demonstrated its efficacy in enhancing both gross and fine
motor skills acquisition, evident in assembly tasks, surgical proce-
dures, welding techniques, powered wheelchair maneuvering, and
laboratory practices [2]. Virtual Reality (VR), in particular, holds
significant promise in psychomotor skills training due to its in-
teractive nature, embodiment features, consistency, replicability,
and safety benefits [1]. For example, intelligent tutoring systems
(ITS) establish learning objectives (for example, shooting a ball at
a basket) while allowing multiple ways for users to enhance their
performance, such as multimodal feedback, actuation for correct-
ing motor tasks, and adjusting task difficulty levels [28, 29]. These
systems also provide real-time instructions or recommendations
for users’ adjustments [6].

Researchers have recently begun exploring the use of this ap-
proach for learning psychomotor skills for applications in manufac-
turing skills like assembly and welding in XR [4]. Through multi-
modal interactions, sensory engagement, and analytics like training
assessments, performance evaluations, and playback features, XR
systems offer instructor assistance for varied industrial tasks [7]
and target populations [3] However, most of the existing work has
primarily focused on cognitive skill development [5, 13, 25]. To the
best of our knowledge, limited research has specifically categorized
virtual environments based on their open-ended characteristics
or explored their impact on psychomotor skills particularly for
manufacturing applications.

In our work, we present a prototype of an open-ended VR system
for training manufacturing and machining skills, particularly for
drilling.
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Figure 2: The VR simulation has three components a) a board full of tools b) a 3-axis manual milling machine, and c) a
whiteboard of instructions and guidance. With these components, our system guides the users through the training steps for
drilling.

3 DEMONSTRATION OF THE SYSTEM
3.1 The Training Tutorial
The VR system has three components, a board full of tools, a 3-
axis manual milling machine, and a whiteboard of instructions and
guidance (Figure 2). With these components, our system guides the
users through the training steps for drilling. The training simulation
comprised four distinct modules, each catering to specific learning
objectives. The sequence includes familiarizing users with VR in-
teractions, understanding safety protocols, engaging in interactive
drilling tutorials, and practicing in an open-ended environment
(Figure 3).

3.1.1 VR Tutorial: This initial segment acquaints users with VR
controller operations within the simulation. Users learn fundamen-
tal actions like object manipulation, such as grabbing or releasing
items, and interacting with buttons. This brief tutorial, spanning a
few minutes, equips users with essential VR proficiency necessary
for subsequent modules.

3.1.2 Lab Safety Module: Focused on safety practices within the
machining environment, this module immerses users in a space cen-
tered around a whiteboard. Users engage with the two-dimensional
surface of the whiteboard, further integrating them into the virtual
realm. Within a few minutes, users address crucial safety aspects
typically overlooked in VR machining simulations. Tasks involve
preparing their avatar displayed on the whiteboard for the labora-
tory environment by identifying and rectifying potential hazards,
like removing jewelry and donning safety goggles. Once the avatar
is suitably prepared, users progress to the next module, symbolizing
their safe entry into the machine shop.

3.1.3 Drilling Module with Embedded Instructions: This module
unfolds within a space housing a whiteboard, a milling machine,
and a tool board, guiding users through drilling operations into
a 4"x6"x2" metal block. Users access concise video tutorials by
a machining instructor and follow step-by-step instructions that

adapt to their progress. Rather than imposing restrictions, the guide
steers users along correct pathways to achieve the drilling task
successfully.

3.1.4 Open-ended Practice in Drilling Module: This segment allows
users to apply their acquired knowledge in an open-ended practice
setting. Users can self-evaluate their skills using various tools, in-
cluding a schematic illustrating the position of each drilled hole. In
the next subsection, we discuss the open-ended design aspect of
our system.

3.2 Simulation Open-endedness
Training systems can be closed-ended when they i) prevent a user
from interacting with objects not directly associated with a pre-
scribed task, or ii) do not advance instruction until a prescribed
task is completed – even when in reality multiple task orders can
complete the goal equally well.

Our system allowed for multiple pathways to achieve the goal
of drilling wherever possible (Figure 1). For example, when setting
up a milling machine for an edge-finding operation, a user can lock
the spindle, turn the spindle on, and adjust the spindle speed, in
any order, provided the spindle speed is adjusted after the spindle
is on. However, when there is only one order to operate a set of
tasks correctly, the simulation requires this one order for users to
succeed. For instance, when the drill bit has been installed into the
chuck, the succeeding action of drilling a hole has only one correct
task order. The user must turn on the spindle, adjust the spindle
speed, operate the quill handle to drill the hole, and then turn off
the spindle. Finally, the simulation does not gate tasks within one
skill from another when the real-life task would not require it. For
example, a user in the simulation can also succeed if they set up the
chuck and vise simultaneously instead of only one after another.

4 SYSTEM IMPLEMENTATION AND SETUP
We developed an end-to-end open-ended training system imple-
mented for the Meta Quest 2 VR standalone head-mounted display
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Figure 3: Our open-ended VR system allows for multiple pathways to achieve the goal wherever possible and restricts the
users to a single pathway wherever the tool requires a strict protocol for operation. Arrows indicate pathways through tasks,
brackets indicate multiple pathways through tasks within one skill, with interchangeability between the tasks in vice set up
and chuck set up. (Figure adapted from our prior work [18])

(HMD), employing two Quest 2 controllers within the Unity3D
game development environment (version 2020.3.13f). Utilizing the
Oculus XR Plugin facilitated the deployment of the APK from Unity
for the Quest headset. Integration of inputs and object interactions
was achieved through the XR Interaction Toolkit 2.0.3, and our code
will be made openly accessible.

Our system offers users the ability to interact with various tools,
workpieces, machine components, buttons, and switches at their
discretion. It employs warning notifications to alert users of perfor-
mance errors, such as drilling too deeply or using incorrect spindle
speeds. Additional features include the whiteboard, instructional
tabs, video modules, and warning/error displays. The tool board
presents a familiar layout with labeled tools for reduced cognitive
load, featuring snappable and removable tools for task completion
and precise tool placement.

During open-ended practice sessions, users are allowed to per-
form actions within multiple permissible pathways established
by task mapping (see Figure 1). The system continually monitors
the machine setup’s current state and necessary prerequisite tasks
for every attempted action. Deviations from permissible pathways
prompt error messages on the whiteboard. If an attempted task
poses risks to individuals or tools in a physical context, the ma-
chine halts, allowing users to acknowledge the error message before
proceeding.

In the drilling module, embedded instructions facilitate open
interactions akin to open-ended practice. However, the system reg-
ulates each instructional step to guide users in completing drilling
tasks in a specific correct sequence. Controller interactions pre-
dominantly utilize two buttons: grip and trigger. The grip but-
ton facilitates grasping and holding various elements, including
tools, workpieces, machine components, and area teleportation.
The trigger button aids in pressing machine or whiteboard buttons

or switches. These interactions support extended reach, employing
a line pointer if a machine button is beyond physical reach.

The milling machine simulation, modeled after a Bridgeport
EZ-TRAK DX 3-axis manual mill [39], incorporates machine com-
ponents and interactions layered with visual cues for enhanced
guidance. Notable active components include knee, column, 2-axis
table, quill, spindle, vise, and digital readout. Instructional guid-
ance is provided via video introductions, step-by-step instructions,
diagrams, a guide, and supplementary elements integrated into
the user interface. Feedback mechanisms primarily rely on warn-
ing and error messages displayed on the whiteboard. Additionally,
unique developments, such as a "heat generation" simulator for
drilling, and audio cues derived from real machining sounds, aid
in sensory-based learning of concepts. These developments offer a
novel approach to replicating and enhancing real-world machine
shop experiences within the VR simulation environment.

The primary mode of feedback during the activity was through
warning and error messages displayed on the whiteboard. Addi-
tionally, we implemented features aimed at facilitating the under-
standing of concepts reliant on sensory feedback, mirroring the
expertise of professionals in the field. To aid users in grasping the
technique of proper pecking during drilling, we introduced a "heat
generation" simulator. As the tool engages with the workpiece, it
computes the heat that would be generated in the real setup in
relation to its speed, feed rate, and diameter. Upon retracting the
drill (pecking) to clear the work, the system decreases the tool’s
stored "heat" value. Correct pecking practices ensure that the heat
value remains below a predetermined threshold. If this threshold
is exceeded, an error sign prompts students, indicating improper
pecking technique.

Finally, the simulation dynamically alters the cutting sound
based on the tool’s feed and speed during active cutting. These
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sounds were captured from the actual drilling sounds in our ma-
chine shop. When the mill operates within optimal parameters, a
subdued recording is played. Conversely, if the tool is aggressively
maneuvered or the spindle speed increases, a higher frequency
sound, respectively, indicates discrepancies in operation.

5 CONCLUSION
In this work, we present an open-ended system for VR-based train-
ing of machining skills like drilling using a 3-axis milling machine.
The system offers an end-to-end training pipeline that allows the
users to explore multiple ways of training for machining tasks. We
believe that our system presents the prototype for several exciting
potential opportunities to design open-ended systems in Virtual
Reality for training manufacturing and other psychomotor skills.
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